[No authors listed]
Environmental and endogenous genotoxic agents can result in a variety of alkylated and carboxymethylated DNA lesions, including N3-ethylthymidine (N3-EtdT), O(2)-EtdT, and O(4)-EtdT as well as N3-carboxymethylthymidine (N3-CMdT) and O(4)-CMdT. By using nonreplicative double-stranded vectors harboring a site-specifically incorporated DNA lesion, we assessed the potential roles of alkyladenine DNA glycosylase (Aag); alkylation repair protein B homologue 2 (Alkbh2); or Alkbh3 in modulating the effects of N3-EtdT, O(2)-EtdT, O(4)-EtdT, N3-CMdT, or O(4)-CMdT on DNA transcription in mammalian cells. We found that the depletion of Aag did not significantly change the transcriptional inhibitory or mutagenic properties of all five examined lesions, suggesting a negligible role of Aag in the repair of these DNA adducts in mammalian cells. In addition, our results revealed that N3-EtdT, but not other lesions, could be repaired by Alkbh2 and Alkbh3 in mammalian cells. Furthermore, we demonstrated the direct reversal of N3-EtdT by purified human Alkbh2 protein in vitro. These findings provided important new insights into the repair of the carboxymethylated and alkylated thymidine lesions in mammalian cells.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |