例如:"lncRNA", "apoptosis", "WRKY"

Inhibition of SGLT1 abrogates preconditioning-induced cardioprotection against ischemia-reperfusion injury.

Biochem. Biophys. Res. Commun.2016 Apr 1;472(2):392-8. Epub 2016 Feb 23
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Recently, we reported Na+/glucose co-transporter (SGLT1) expression in mouse and human heart. We speculated that SGLT1 might play an important role in ischemic preconditioning-induced cardioprotection. Therefore, the present study was designed to find the role of SGLT1 in ischemic preconditioning-induced cardioprotection. METHODS:Hearts isolated from SD male rats were subjected to either ischemia-reperfusion injury (I/R) (15 min global ischemia followed by 20 min reperfusion) or ischemic preconditioning (IPC) (3 cycles of 2 min global ischemia separated by 3 min reperfusion) followed by I/R in presence and absence of phlorizin, an SGLT1 inhibitor. RESULTS:IPC increased membrane SGLT1 expression in rat heart as observed by immunoblotting and immunohistochemistry. Hearts from I/R group showed significant increase in oxidative stress levels and marked myocardial injury as compared to control. We also observed significant increase in apoptotic parameters in I/R heart, as measured by caspase-3 activity, TUNEL positive nuclei and gene expression analysis. Significant improvement in oxidative stress, apoptosis parameters and cardiac injury was observed in I/R hearts when subjected to IPC. However, all beneficial effects of preconditioning were lost when hearts were pre-treated with phlorizin. CONCLUSION:Present study indicated that inhibition of SGLT1 by phlorizin abrogated the beneficial effect of ischemic-preconditioning and for the first time, provides evidence that SGLT1 plays a crucial role in ischemic preconditioning-induced cardioprotection.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读