[No authors listed]
Studying protein interactions in whole organisms is fundamental to understanding development. Here, we combine in vivo expressed GFP-tagged proteins with quantitative proteomics to identify protein-protein interactions of selected key proteins involved in early C. elegans embryogenesis. Co-affinity purification of interaction partners for eight bait proteins resulted in a pilot in vivo interaction map of proteins with a focus on early development. Our network reflects known biology and is highly enriched in functionally relevant interactions. To demonstrate the utility of the map, we looked for new regulators of P granule dynamics and found that GEI-12, a novel binding partner of the DYRK family kinase MBK-2, is a key regulator of P granule formation and germline maintenance. Our data corroborate a recently proposed model in which the phosphorylation state of GEI-12 controls P granule dynamics. In addition, we find that GEI-12 also induces granule formation in mammalian cells, suggesting a common regulatory mechanism in worms and humans. Our results show that in vivo interaction proteomics provides unique insights into animal development.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |