例如:"lncRNA", "apoptosis", "WRKY"

The influence of Mg(2+) coordination on (13) C and (15) N chemical shifts in CKI1RD protein domain from experiment and molecular dynamics/density functional theory calculations.

Proteins. 2016 May;84(5):686-99. doi:10.1002/prot.25019. Epub 2016 Mar 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Sequence dependence of (13) C and (15) N chemical shifts in the receiver domain of CKI1 protein from Arabidopsis thaliana, CKI1RD , and its complexed form, CKI1RD •Mg(2+) , was studied by means of MD/DFT calculations. MD simulations of a 20-ns production run length were performed. Nine explicitly hydrated structures of increasing complexity were explored, up to a 40-amino-acid structure. The size of the model necessary depended on the type of nucleus, the type of amino acid and its sequence neighbors, other spatially close amino acids, and the orientation of amino acid NH groups and their surface/interior position. Using models covering a 10 and a 15 Å environment of Mg(2+) , a semi-quantitative agreement has been obtained between experiment and theory for the V67-I73 sequence. The influence of Mg(2+) binding was described better by the 15 Å as compared to the 10 Å model. Thirteen chemical shifts were analyzed in terms of the effect of Mg(2+) insertion and geometry preparation. The effect of geometry was significant and opposite in sign to the effect of Mg(2+) binding. The strongest individual effects were found for (15) N of D70, S74, and V68, where the electrostatics dominated; for (13) Cβ of D69 and (15) N of K76, where the influences were equal, and for (13) Cα of F72 and (13) Cβ of K76, where the geometry adjustment dominated. A partial correlation between dominant geometry influence and torsion angle shifts upon the coordination has been observed. Proteins 2016; 84:686-699. © 2016 Wiley Periodicals, Inc.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读