例如:"lncRNA", "apoptosis", "WRKY"

Molecular mechanism of peptide editing in the tapasin-MHC I complex.

Sci Rep. 2016 Jan 12;6:19085
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Immune recognition of infected or malignantly transformed cells relies on antigenic peptides exposed at the cell surface by major histocompatibility complex class I (MHC I) molecules. Selection and loading of peptides onto MHC I is orchestrated by the peptide-loading complex (PLC), a multiprotein assembly whose structure has not yet been resolved. Tapasin, a central component of the PLC, stabilises MHC I and catalyses the exchange of low-affinity against high-affinity, immunodominant peptides. Up to now, the molecular basis of this peptide editing mechanism remained elusive. Here, using all-atom molecular dynamics (MD) simulations, we unravel the atomic details of how tapasin and antigen peptides act on the MHC I binding groove. Force distribution analysis reveals an intriguing molecular tug-of-war mechanism: only high-affinity peptides can exert sufficiently large forces to close the binding groove, thus overcoming the opposite forces exerted by tapasin to open it. Tapasin therefore accelerates the release of low-affinity peptides until a high-affinity antigen binds, promoting subsequent PLC break-down. Fluctuation and entropy analyses show how tapasin chaperones MHC I by stabilising it in a peptide-receptive conformation. Our results explain previous experiments and mark a key step towards a better understanding of adaptive immunity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读