例如:"lncRNA", "apoptosis", "WRKY"

Increased nuclear stiffness via FAK-ERK1/2 signaling is necessary for synthetic mechano-growth factor E peptide-induced tenocyte migration.

Sci Rep. 2016 Jan 08;6:18809
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We have previously reported that a synthetic mechano-growth factor (MGF) C-terminal E-domain with 25 amino acids (MGF-C25E) promotes rat tenocyte migration through the FAK-ERK1/2 signaling pathway. However, the role of the nucleus in MGF-C25E-promoted tenocyte migration and the molecular mechanisms involved remain unclear. In this study, we demonstrate that MGF-C25E increases the Young's modulus of tenocytes through the FAK-ERK1/2 signaling pathway. This increase is not accompanied by an obvious change in the expression of Lamin A/C but is accompanied by significant chromatin condensation, indicating that MGF-C25E-induced chromatin condensation may contribute to the increased nuclear stiffness. Moreover, DNA methylation is observed in MGF-C25E-treated tenocytes. Inhibition of DNA methylation suppresses the elevation in chromatin condensation, in nuclear stiffness, and in tenocyte migration induced by MGF-C25E. The inhibition of the focal adhesion kinase (FAK) or extracellular signal regulated kinase 1/2 (ERK1/2) signals represses MGF-C25E-promoted DNA methylation. It also abolishes chromatin condensation, nuclear stiffness, and cell migration. Taken together, our results suggest that MGF-C25E promotes tenocyte migration by increasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This provides strong evidence for the role of nuclear mechanics in tenocyte migration and new insight into the molecular mechanisms of MGF-promoted tenocyte migration.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读