例如:"lncRNA", "apoptosis", "WRKY"

Phosphatidylinositol 3-Kinase Promotes Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence.

Plant Physiol.2016 Mar;170(3):1714-31. Epub 2016 Jan 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H(+)-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence complementation in tobacco guard cells showed that PI3K interacted with VHA-B2 in the tonoplasts. Through the use of pharmacological and genetic tools, we found that PI3K and V-ATPase promoted vacuolar acidification and stomatal closure during leaf senescence. Vacuolar acidification was suppressed by the PIKfyve inhibitor in 35S:AtVPS34-YFP Arabidopsis during MeJA-induced leaf senescence, but the decrease was lower than that in YFP-labeled Arabidopsis. These results suggest that PI3K promotes V-ATPase activation and consequently induces vacuolar acidification and stomatal closure, thereby delaying MeJA-induced leaf senescence.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读