例如:"lncRNA", "apoptosis", "WRKY"

Drosophila p120-catenin is crucial for endocytosis of the dynamic E-cadherin-Bazooka complex.

J. Cell. Sci.2016 Feb 01;129(3):477-82. Epub 2015 Dec 23
Natalia A Bulgakova 1 , Nicholas H Brown 2
Natalia A Bulgakova 1 , Nicholas H Brown 2

[No authors listed]

Author information
  • 1 The Gurdon Institute and Dept of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK.
  • 2 The Gurdon Institute and Dept of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK nb117@cam.ac.uk.
全文

摘要


The intracellular functions of classical cadherins are mediated through the direct binding of two catenins: β-catenin and p120-catenin (also known as CTNND1 in vertebrates, and p120ctn in Drosophila). Whereas β-catenin is crucial for cadherin function, the role of p120-catenin is less clear and appears to vary between organisms. We show here that p120-catenin has a conserved role in regulating the endocytosis of cadherins, but that its ancestral role might have been to promote endocytosis, followed by the acquisition of a new inhibitory role in vertebrates. In Drosophila, p120-catenin facilitates endocytosis of the dynamic E-cadherin-Bazooka subcomplex, which is followed by its recycling. The absence of p120-catenin stabilises this subcomplex at the membrane, reducing the ability of cells to exchange neighbours in embryos and expanding cell-cell contacts in imaginal discs.

KEYWORDS: Cell adhesion, E-cadherin trafficking, Epithelial morphogenesis