例如:"lncRNA", "apoptosis", "WRKY"

Maturation stage enamel malformations in Amtn and Klk4 null mice.

Matrix Biol.2016 May-Jul ;52-54:219-233. Epub 2015 Nov 24
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Amelotin (AMTN) and kallikrein-4 (KLK4) are secreted proteins specialized for enamel biomineralization. We characterized enamel from wild-type, Amtn(-/-), Klk4(-/-), Amtn(+/-)Klk4(+/-) and Amtn(-/-)Klk4(-/-) mice to gain insights into AMTN and KLK4 functions during amelogenesis. All of the null mice were healthy and fertile. The mandibular incisors in Amtn(-/-), Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice were chalky-white and chipped. No abnormalities except in enamel were observed, and no significant differences were detected in enamel thickness or volume, or in rod decussation. Micro-computed tomography (μCT) maximum intensity projections localized the onset of enamel maturation in wild-type incisors distal to the first molar, but mesial to this position in Amtn(-/-), Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice, demonstrating a delay in enamel maturation in Amtn(-/-) incisors. Micro-CT detected significantly reduced enamel mineral density (2.5 and 2.4gHA/cm(3)) in the Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice respectively, compared with wild-type enamel (3.1gHA/cm(3)). Backscatter scanning electron microscopy showed that mineral density progressively diminished with enamel depth in the Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice. The Knoop hardness of the Amtn(-/-) outer enamel was significantly reduced relative to the wild-type and was not as hard as the middle or inner enamel. Klk4(-/-) enamel hardness was significantly reduced at all levels, but the outer enamel was significantly harder than the inner and middle enamel. Thus the hardness patterns of the Amtn(-/-) and Klk4(-/-) mice were distinctly different, while the Amtn(-/-)Klk4(-/-) outer enamel was not as hard as in the Amtn(-/-) and Klk4(-/-) mice. We conclude that AMTN and KLK4 function independently, but are both necessary for proper enamel maturation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读