例如:"lncRNA", "apoptosis", "WRKY"

24-Methylenecycloartanyl ferulate, a major compound of γ-oryzanol, promotes parvin-beta expression through an interaction with peroxisome proliferator-activated receptor-gamma 2 in human breast cancer cells.

Biochem. Biophys. Res. Commun.2015 Dec 25;468(4):574-9. Epub 2015 Nov 05
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Parvin-β is an adaptor protein that binds to integrin-linked kinase (ILK) and is significantly downregulated in breast tumors and breast cancer cell lines. We treated the breast cancer cell line MCF7 with 24-methylenecycloartanyl ferulate (24-MCF), a γ-oryzanol compound. We observed upregulation of parvin-β (GenBank Accession No. AF237769) and peroxisome proliferator-activated receptor (PPAR)-γ2 (GenBank Accession No. NM_015869). Among γ-oryzanol compounds, only treatment with 24-MCF led to the formation of reverse transcription-PCR products of parvin-β (650 and 500 bp) and PPAR-γ2 (580 bp) in MCF7 cells, but not in T47D, SK-BR-3, or MDA-MB-231 cells. 24-MCF treatment increased the mRNA and protein levels of parvin-β in MCF7 cells in a dose-dependent manner. We hypothesized that there is a correlation between parvin-β expression and induction of PPAR-γ2. This hypothesis was investigated by using a promoter-reporter assay, chromatin immunoprecipitation, and an electrophoretic mobility shift assay. 24-MCF treatment induced binding of PPAR-γ2 to a peroxisome proliferator response element-like cis-element (ACTAGGACAAAGGACA) in the parvin-β promoter in MCF7 cells in a dose-dependent manner. 24-MCF treatment significantly decreased anchorage-independent growth and inhibited cell movement in comparison to control treatment with dimethyl sulfoxide. 24-MCF treatment reduced the levels of GTP-bound Rac1 and Cdc42. Evaluation of Akt1 inhibition by 24-MCF revealed that the half maximal effective concentration was 33.3 μM. Docking evaluations revealed that 24-MCF binds to the ATP-binding site of Akt1(PDB ID: 3OCB) and the compound binding energy is -8.870 kcal/mol. Taken together, our results indicate that 24-MCF treatment increases parvin-β expression, which may inhibit ILK downstream signaling.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读