[No authors listed]
Mammalian translation elongation factor eEF1A is involved in ribosomal polypeptide synthesis. Also, the protein fulfills many additional duties in an eukaryotic cell. Here, we identified a novel partner of the eEF1A1 isoform, namely Sgt1, a protein that possesses co-chaperon properties and participates in antiviral defense processes. By applying different methods, we demonstrated the interaction between eEF1A1 and Sgt1 using both purified proteins and cell lysates. We also found that the D2 and D3 domains of eEF1A1 and the TPR domain of Sgt1 are involved in complex formation. Modeling of the Sgt1-eEF1A1 complex suggested both shape and charge complementarities of the eEF1A1-Sgt1 interface stabilized by a number of salt bridges. As long as such interaction mode is typical more for protein-nucleic acid interaction we suggested a possibility that Sgt1 competes with viral RNA for binding to eEF1A and obtained in vitro evidence to this effect.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |