[No authors listed]
14-3-3s are evolutionarily conserved eukaryotic regulatory proteins that are involved in diverse biological processes. The common mode of action for the 14-3-3 proteins is through the binding of phosphorylated target proteins. In many species, multiple 14-3-3 isoforms exist and these different isoforms can exhibit distinct ranges of target interactions. The dimerization of 14-3-3s is central to their function. 14-3-3 isoforms can form different combinations of homo- and heterodimers, which contribute to the broad functional diversity of the family. In this study, we showed that phosphomimetic mutation of a conserved serine residue in the dimerization interface of 14-3-3 isoforms, Ser-62, not only affects the ability of Arabidopsis 14-3-3Ï to form homodimers, but alters the range of 14-3-3 family members with which it can form heterodimers. Furthermore, we demonstrated that the phosphorylation status of Ser-62 can regulate the binding of 14-3-3Ï to target proteins, suggesting that Ser-62 might be a conserved key element to modulate target binding in both plants and animals.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |