例如:"lncRNA", "apoptosis", "WRKY"

Differential effects on β-cell mass by disruption of Bardet-Biedl syndrome or Alstrom syndrome genes.

Hum. Mol. Genet.2016 Jan 1;25(1):57-68. Epub 2015 Oct 22
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Rare genetic syndromes characterized by early-onset type 2 diabetes have revealed the importance of pancreatic β-cells in genetic susceptibility to diabetes. However, the role of genetic regulation of β-cells in disorders that are also characterized by highly penetrant obesity, a major additional risk factor, is unclear. In this study, we investigated the contribution of genes associated with two obesity ciliopathies, Bardet-Biedl Syndrome and Alstrom Syndrome, to the production and maintenance of pancreatic β-cells. Using zebrafish models of these syndromes, we identified opposing effects on production of β-cells. Loss of the Alstrom gene, alms1, resulted in a significant decrease in β-cell production whereas loss of BBS genes, bbs1 or bbs4, resulted in a significant increase. Examination of the regulatory program underlying β-cell production suggested that these effects were specific to β-cells. In addition to the initial production of β-cells, we observed significant differences in their continued maintenance. Under prolonged exposure to high glucose conditions, alms1-deficient β-cells were unable to continually expand as a result of decreased proliferation and increased cell death. Although bbs1-deficient β-cells were similarly susceptible to apoptosis, the overall maintenance of β-cell number in those animals was sustained likely due to increased proliferation. Taken together, these findings implicate discrepant production and maintenance of β-cells in the differential susceptibility to diabetes found between these two genetic syndromes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读