例如:"lncRNA", "apoptosis", "WRKY"

Rearrangement of MICU1 multimers for activation of MCU is solely controlled by cytosolic Ca(2.).

Sci Rep. 2015 Oct 22;5:15602
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Mitochondrial Ca(2+) uptake is a vital process that controls distinct cell and organelle functions. Mitochondrial calcium uptake 1 (MICU1) was identified as key regulator of the mitochondrial Ca(2+) uniporter (MCU) that together with the essential MCU regulator (EMRE) forms the mitochondrial Ca(2+) channel. However, mechanisms by which MICU1 controls MCU/EMRE activity to tune mitochondrial Ca(2+) signals remain ambiguous. Here we established a live-cell FRET approach and demonstrate that elevations of cytosolic Ca(2+) rearranges MICU1 multimers with an EC50 of 4.4 μM, resulting in activation of mitochondrial Ca(2+) uptake. MICU1 rearrangement essentially requires the EF-hand motifs and strictly correlates with the shape of cytosolic Ca(2+) rises. We further show that rearrangements of MICU1 multimers were independent of matrix Ca(2+) concentration, mitochondrial membrane potential, and expression levels of MCU and EMRE. Our experiments provide novel details about how MCU/EMRE is regulated by MICU1 and an original approach to investigate MCU/EMRE activation in intact cells.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读