[No authors listed]
The loss of β-catenin inhibitory components is a well-established mechanism of carcinogenesis but β-catenin hyperactivity can also be enhanced through its coactivators. Here we first interrogated a highly validated genomic screen and the largest repository of cancer genomics data and identified JRK as a potential new oncogene and therapeutic target of the β-catenin pathway. We proceeded to validate the oncogenic role of JRK in colon cancer cells and primary tumors. Consistent with a β-catenin activator function, depletion of JRK in several cancer cell lines repressed β-catenin transcriptional activity and reduced cell proliferation. Importantly, JRK expression was aberrantly elevated in 21% of colorectal cancers, 15% of breast and ovarian cancers and was associated with increased expression of β-catenin target genes and increased cell proliferation. This study shows that JRK is required for β-catenin hyperactivity regardless of the adenomatous polyposis coli/β-catenin mutation status and targeting JRK presents new opportunities for therapeutic intervention in cancer.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |