例如:"lncRNA", "apoptosis", "WRKY"

9-Lipoxygenase-Derived Oxylipins Activate Brassinosteroid Signaling to Promote Cell Wall-Based Defense and Limit Pathogen Infection.

Plant Physiol.2015 Nov;169(3):2324-34. Epub 2015 Sep 28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The oxylipins, a large family of oxygenated lipid derivatives, regulate plant development and immunity. Two members of the 9-lipoxygenase (9-LOX) oxylipin pathway, 9-hydroxyoctadecatrienoic acid and 9-ketooctadecatrienoic acid, control root development and plant defense. Studies in Arabidopsis (Arabidopsis thaliana) using a series of 9-hydroxyoctadecatrienoic acid- and 9-ketooctadecatrienoic acid-insensitive nonresponding to oxylipins (noxy) mutants showed the importance of the cell wall as a 9-LOX-induced defense component and the participation of NOXY proteins in signaling cell wall damage. Here, we examined 9-LOX signaling using the mutants lox1lox5, which lacks 9-LOX activity, and noxy2-2, which shows oxylipin insensitivity and mitochondrial dysfunction. Mutants in brassinosteroids (BRs), a class of plant hormones necessary for normal plant growth and the control of cell wall integrity, were also analyzed. Several lines of evidence indicated that 9-LOX-derived oxylipins induce BR synthesis and signaling to activate cell wall-based responses such as callose deposition and that constitutive activation of BR signaling in bri1-EMS-suppressor 1-D (bes1-D) plants enhances this response. We found that constitutive BR signaling in bes1-D and brassinolide-resistant 1-1D (bzr1-1D) mutants conferred resistance to Pseudomonas syringae. bes1-D and bzr1-1D showed increased resistance to Golovinomyces cichoracearum, an obligate biotrophic fungus that penetrates the cell wall for successful infection, whereas susceptibility was enhanced in lox1lox5 and noxy2-2. Our results indicate a sequential action of 9-LOX and BR signaling in activating cell wall-based defense, and this response prevents pathogen infection. These results show interaction between the 9-LOX and BR pathways and help to clarify their role in modulating plant defense.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读