例如:"lncRNA", "apoptosis", "WRKY"

Plic-1, a new target in repressing epileptic seizure by regulation of GABAAR function in patients and a rat model of epilepsy.

Clin Sci (Lond). 2015 Dec;129(12):1207-23. Epub 2015 Sep 28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Dysfunction of γ-aminobutyric acid A (GABAA) receptors (GABAARs) is a prominent factor affecting intractable epilepsy. Plic-1, an ubiquitin-like protein enriched in the inhibitory synapses connecting GABAARs and the ubiquitin protease system (UPS), plays a key role in the modification of GABAAR functions. However, the relationship between Plic-1 and epileptogenesis is not known. In the present study, we aimed to investigate Plic-1 levels in patients with temporal lobe epilepsy, as well as the role of Plic-1 in regulating onset and progression of epilepsy in animal models. We found that Plic-1 expression was significantly decreased in patients with epilepsy as well as pilocarpine- and pentylenetetrazol (PTZ)-induced rat epileptic models. Intrahippocampal injection of the PePα peptide, which disrupts Plic-1 binding to GABAARs, significantly shortened the latency of seizure onset, and increased the seizure severity and duration in these two epileptic models. Overexpressed Plic-1 through lentivirus transfection into a PTZ model resulted in a reduction in both seizure severity and generalized tonic-clonic seizure duration. Whole-cell clamp recordings revealed that the PePα peptide decreased miniature inhibitory postsynaptic currents (mIPSCs) whereas overexpressed Plic-1 increased mIPSCs in the pyramidal neurons of the hippocampus. These effects can be blocked by picrotoxin, a GABAAR inhibitor. Our results indicate that Plic-1 plays an important role in managing epileptic seizures by enhancing seizure inhibition through regulation of GABAARs at synaptic sites.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读