例如:"lncRNA", "apoptosis", "WRKY"

UNC-16 (JIP3) Acts Through Synapse-Assembly Proteins to Inhibit the Active Transport of Cell Soma Organelles to Caenorhabditis elegans Motor Neuron Axons.

Genetics. 2015 Sep;201(1):117-41
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The conserved protein UNC-16 (JIP3) inhibits the active transport of some cell soma organelles, such as lysosomes, early endosomes, and Golgi, to the synaptic region of axons. However, little is known about UNC-16's organelle transport regulatory function, which is distinct from its Kinesin-1 adaptor function. We used an unc-16 suppressor screen in Caenorhabditis elegans to discover that UNC-16 acts through CDK-5 (Cdk5) and two conserved synapse assembly proteins: SAD-1 (SAD-A Kinase), and SYD-2 (Liprin-α). Genetic analysis of all combinations of double and triple mutants in unc-16(+) and unc-16(-) backgrounds showed that the three proteins (CDK-5, SAD-1, and SYD-2) are all part of the same organelle transport regulatory system, which we named the CSS system based on its founder proteins. Further genetic analysis revealed roles for SYD-1 (another synapse assembly protein) and STRADα (a SAD-1-interacting protein) in the CSS system. In an unc-16(-) background, loss of the CSS system improved the sluggish locomotion of unc-16 mutants, inhibited axonal lysosome accumulation, and led to the dynein-dependent accumulation of lysosomes in dendrites. Time-lapse imaging of lysosomes in CSS system mutants in unc-16(+) and unc-16(-) backgrounds revealed active transport defects consistent with the steady-state distributions of lysosomes. UNC-16 also uses the CSS system to regulate the distribution of early endosomes in neurons and, to a lesser extent, Golgi. The data reveal a new and unprecedented role for synapse assembly proteins, acting as part of the newly defined CSS system, in mediating UNC-16's organelle transport regulatory function.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读