例如:"lncRNA", "apoptosis", "WRKY"

N-Acetylglucosaminyltransferase V exacerbates murine colitis with macrophage dysfunction and enhances colitic tumorigenesis.

J. Gastroenterol.2016 Apr;51(4):357-69. Epub 2015 Sep 08
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Oligosaccharide structures and their alterations have important roles in modulating intestinal inflammation. N-Acetylglucosaminyltransferase V (GnT-V) is involved in the biosynthesis of N-acetylglucosamine (GlcNAc) by β1,6-branching on N-glycans and is induced in various pathologic processes, such as inflammation and regeneration. GnT-V alters host immune responses by inhibiting the functions of CD4(+) T cells and macrophages. The present study aimed to clarify the role of GnT-V in intestinal inflammation using GnT-V transgenic mice. METHODS:Colitis severity was compared between GnT-V transgenic mice and wild-type mice. β1,6-GlcNAc levels were investigated by phytohemagglutinin-L4 lectin blotting and flow cytometry. We investigated phagocytosis of macrophages by measuring the number of peritoneal-macrophage-ingested fluorescent latex beads by flow cytometry. Cytokine production in the culture supernatant of mononuclear cells from the spleen, mesenteric lymph nodes, and bone-marrow-derived macrophages was determined by enzyme-linked immunosorbent assay. Clodronate liposomes were intravenously injected to deplete macrophages in vivo. Chronic-colitis-associated tumorigenesis was assessed after 9 months of repeated administration of dextran sodium sulfate (DSS). RESULTS:DSS-induced colitis and colitis induced by trinitrobenzene sulfonic acid were markedly exacerbated in GnT-V transgenic mice compared with wild-type mice. Production of interleukin-10 and phagocytosis of macrophages were significantly impaired in GnT-V transgenic mice compared with wild-type mice. Clodronate liposome treatment to deplete macrophages blocked the exacerbation of DSS-induced colitis and impairment of interleukin-10 production in GnT-V transgenic mice. Chronic-colitis-associated tumorigenesis was significantly increased in GnT-V transgenic mice. CONCLUSIONS:Overexpression of GnT-V exacerbated murine experimental colitis by inducing macrophage dysfunction, thereby enhancing colorectal tumorigenesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读