例如:"lncRNA", "apoptosis", "WRKY"

Intracellular Na+ Concentration ([Na+]i) Is Elevated in Diabetic Hearts Due to Enhanced Na+-Glucose Cotransport.

J Am Heart Assoc. 2015 Aug 27;4(9):e002183
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Intracellular Na(+) concentration ([Na(+)]i) regulates Ca(2+) cycling, contractility, metabolism, and electrical stability of the heart. [Na(+)]i is elevated in heart failure, leading to arrhythmias and oxidative stress. We hypothesized that myocyte [Na(+)]i is also increased in type 2 diabetes (T2D) due to enhanced activity of the Na(+)-glucose cotransporter. METHODS AND RESULTS:To test this hypothesis, we used myocardial tissue from humans with T2D and a rat model of late-onset T2D (HIP rat). Western blot analysis showed increased Na(+)-glucose cotransporter expression in failing hearts from T2D patients compared with nondiabetic persons (by 73±13%) and in HIP rat hearts versus wild-type (WT) littermates (by 61±8%). [Na(+)]i was elevated in HIP rat myocytes both at rest (14.7±0.9 versus 11.4±0.7 mmol/L in WT) and during electrical stimulation (17.3±0.8 versus 15.0±0.7 mmol/L); however, the Na(+)/K(+)-pump function was similar in HIP and WT cells, suggesting that higher [Na(+)]i is due to enhanced Na(+) entry in diabetic hearts. Indeed, Na(+) influx was significantly larger in myocytes from HIP versus WT rats (1.77±0.11 versus 1.29±0.06 mmol/L per minute). Na(+)-glucose cotransporter inhibition with phlorizin or glucose-free solution greatly reduced Na(+) influx in HIP myocytes (to 1.20±0.16 mmol/L per minute), whereas it had no effect in WT cells. Phlorizin also significantly decreased glucose uptake in HIP myocytes (by 33±9%) but not in WT, indicating an increased reliance on the Na(+)-glucose cotransporter for glucose uptake in T2D hearts. CONCLUSIONS:Myocyte Na(+)-glucose cotransport is enhanced in T2D, which increases Na(+) influx and causes Na(+) overload. Higher [Na(+)]i may contribute to arrhythmogenesis and oxidative stress in diabetic hearts.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读