例如:"lncRNA", "apoptosis", "WRKY"

O-GlcNAc cycling enzymes control vascular development of the placenta by modulating the levels of HIF-1α.

Placenta. 2015 Oct;36(10):1063-8. Epub 2015 Aug 08
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


INTRODUCTION:Placental vasculogenesis is essential for fetal growth and development, and is affected profoundly by oxygen tension (hypoxia). Hypoxia-inducible factor-1α (HIF-1α), which is stabilized at the protein level in response to hypoxia, is essential for vascular morphogenesis in the placenta. Many studies suggested that responses to hypoxia is influenced by O-GlcNAcylation. O-GlcNAcylation is regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) that catalyze the addition and removal of O-GlcNAc respectively. METHODS:We generated OGA deficient mice and evaluated OGA(-/-) placentas. The analysis of OGA(-/-) placentas was focused on morphological change and placental vasculogenesis. HIF-1α protein stability or transcriptional activity under dysregulation of O-GlcNAcylation were evaluated by Western blot, RT-qPCR and luciferase reporter gene assays in MEFs or MS1 cell line. RESULTS:Deletion of OGA results in defective placental vasculogenesis. OGA(-/-) placentas showed an abnormal placental shape and reduced vasculature in the labyrinth, which caused a developmental delay in the embryos. OGA deletion, which elevates O-GlcNAcylation and downregulates O-GlcNAc transferase (OGT), suppressed HIF-1α stabilization and the transcription of its target genes. In contrast, the overexpression of O-GlcNAc cycling enzymes enhanced the expression and transcriptional activity of HIF-1α. DISCUSSION:These results suggest that OGA plays a critical role in placental vasculogenesis by modulating HIF-1α stabilization. Control of O-GlcNAcylation is essential for placental development.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读