例如:"lncRNA", "apoptosis", "WRKY"

Socs36E limits STAT signaling via Cullin2 and a SOCS-box independent mechanism in the Drosophila egg chamber.

Mech. Dev.2015 Nov;138 Pt 3:313-27. Epub 2015 Aug 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The Suppressor of Cytokine Signaling (SOCS) proteins are critical, highly conserved feedback inhibitors of signal transduction cascades. The family of SOCS proteins is divided into two groups: ancestral and vertebrate-specific SOCS proteins. Vertebrate-specific SOCS proteins have been heavily studied as a result of their strong mutant phenotypes. However, the ancestral clade remains less studied, a potential result of genetic redundancies in mammals. Use of the genetically tractable organism Drosophila melanogaster enables in vivo assessment of signaling components and mechanisms with less concern about the functional redundancy observed in mammals. In this study, we investigated how the SOCS family member Suppressor of Cytokine Signaling at 36E (Socs36E) attenuates Janus Kinase/Signal Transducer and Activator of Transcription activation during specification of motile border cells in Drosophila oogenesis. We found that Socs36E genetically interacts with the Cullin2 (Cul2) scaffolding protein. Like Socs36E, Cul2 is required to limit the number of motile cells in egg chambers. We demonstrated that loss of Cul2 in the follicle cells significantly increased nuclear protein levels, which resulted in additional cells acquiring invasive properties. Further, reduction of Cul2 suppressed border cell migration defects that occur in a Stat92E-sensitized genetic background. Our data incorporated Cul2 into a previously described genetic regulatory network that is required to generate a discrete boundary between cell fates. We also found that Socs36E is able to attenuate duanyu1813 activity in the egg chamber when it does not have a functional SOCS box. Collectively, this work contributes mechanistic insight to a regulatory genetic circuit, and suggests that Socs36E regulates Jak/duanyu1813 signaling via a Cul2-dependent mechanism, as well as by a Cullin-independent manner, in vivo.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读