例如:"lncRNA", "apoptosis", "WRKY"

Escherichia coli 6-phosphogluconate dehydrogenase aids in tellurite resistance by reducing the toxicant in a NADPH-dependent manner.

Microbiol. Res.2015 Aug;177:22-7. Epub 2015 May 18
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Exposure to the tellurium oxyanion tellurite (TeO3(2-)) results in the establishment of an oxidative stress status in most microorganisms. Usually, bacteria growing in the presence of the toxicant turn black because of the reduction of tellurite (Te(4+)) to the less-toxic elemental tellurium (Te(0)). In vitro, at least part of tellurite reduction occurs enzymatically in a nicotinamide dinucleotide-dependent reaction. In this work, we show that TeO3(2-) reduction by crude extracts of Escherichia coli overexpressing the zwf gene (encoding glucose-6-phosphate dehydrogenase) takes place preferentially in the presence of NADPH instead of NADH. The enzyme responsible for toxicant reduction was identified as 6-phosphogluconate dehydrogenase (Gnd). The gnd gene showed a subtle induction at short times after toxicant exposure while strains lacking gnd were more susceptible to the toxicant. These results suggest that both NADPH-generating enzymes from the pentose phosphate shunt may be involved in tellurite detoxification and resistance in E. coli.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读