例如:"lncRNA", "apoptosis", "WRKY"

Crystallographic analysis of the Arabidopsis thaliana BAG5-calmodulin protein complex.

Acta Crystallogr F Struct Biol Commun. 2015 Jul;71(Pt 7):870-5. Epub 2015 Jun 27
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Arabidopsis thaliana BAG5 (AtBAG5) belongs to the plant BAG (Bcl-2-associated athanogene) family that performs diverse functions ranging from growth and development to abiotic stress and senescence. BAG family members can act as nucleotide-exchange factors for heat-shock protein 70 (Hsp70) through binding of their evolutionarily conserved BAG domains to the Hsp70 ATPase domain, and thus may be involved in the regulation of chaperone-mediated protein folding in plants. AtBAG5 is distinguished from other family members by the presence of a unique IQ motif adjacent to the BAG domain; this motif is specific for calmodulin (CaM) binding, indicating a potential role in the plant calcium signalling pathway. To provide a better understanding of the IQ motif-mediated interaction between AtBAG5 and CaM, the two proteins were expressed and purified separately and then co-crystallized together. Diffraction-quality crystals of the complex were grown using the sitting-drop vapour-diffusion technique from a condition consisting of 0.1 M Tris-HCl pH 8.5, 2.5 M ammonium sulfate. The crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 64.56, b = 74.89, c = 117.09 Å. X-ray diffraction data were recorded to a resolution of 2.5 Å from a single crystal using synchrotron radiation. Assuming the presence of two molecules in the asymmetric unit, a Matthews coefficient of 2.44 Å(3) Da(-1) was calculated, corresponding to a solvent content of approximately 50%.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读