例如:"lncRNA", "apoptosis", "WRKY"

A Recently Evolved Alternative Splice Site in the BRANCHED1a Gene Controls Potato Plant Architecture.

Curr. Biol.2015 Jul 20;25(14):1799-809. Epub 2015 Jun 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Amplification and diversification of transcriptional regulators that control development is a driving force of morphological evolution. A major source of protein diversity is alternative splicing, which leads to the generation of different isoforms from a single gene. The mechanisms and timing of intron evolution nonetheless remain unclear, and the functions of alternative splicing-generated protein isoforms are rarely studied. In Solanum tuberosum, the BRANCHED1a (BRC1a) gene encodes a TCP transcription factor that controls lateral shoot outgrowth. Here, we report the recent evolution in Solanum of an alternative splice site in BRC1a that leads to the generation of two BRC1a protein isoforms with distinct C-terminal regions, BRC1a(Long) and BRC1a(Short), encoded by unspliced and spliced mRNA, respectively. The BRC1a(Long) C-terminal region has a strong activation domain, whereas that of BRC1a(S) lacks an activation domain and is predicted to form an amphipathic helix, the H domain, which prevents protein nuclear targeting. BRC1a(Short) is thus mainly cytoplasmic, while BRC1a(Long) is mainly nuclear. BRC1a(Long) functions as a transcriptional activator, whereas BRC1a(Short) appears to have no transcriptional activity. Moreover, BRC1a(Short) can heterodimerize with BRC1a(Long) and act as a dominant-negative factor; it increases BRC1a(Long) concentration in cytoplasm and reduces its transcriptional activity. This alternative splicing mechanism is regulated by hormones and external stimuli that control branching. The evolution of a new alternative splicing site and a novel protein domain in Solanum BRC1a led to a multi-level mechanism of post-transcriptional and post-translational BRC1a regulation that effectively modulates its branch suppressing activity in response to environmental and endogenous cues.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读