[No authors listed]
Sterylglucosides (SGs) are composed of a glucose and sterol derivatives, and are distributed in fungi, plants and mammals. We recently identified EGCrP1 and EGCrP2 (endoglycoceramidase-related proteins 1 and 2) as a β-glucocerebrosidase and steryl-β-glucosidase, respectively, in Cryptococcus neoformans. We herein describe an EGCrP2 homologue (Egh1; ORF name, Yir007w) involved in SG catabolism in Saccharomyces cerevisiae. The purified recombinant Egh1 hydrolyzed various β-glucosides including ergosteryl β-glucoside (EG), cholesteryl β-glucoside, sitosteryl β-glucoside, para-nitrophenyl β-glucoside, 4-methylumberifellyl β-glucoside and glucosylceramide. The disruption of EGH1 in S. cerevisiae BY4741 (egh1Î) resulted in the accumulation of EG and fragmentation of vacuoles. The expression of EGH1 in egh1Î (revertant) reduced the accumulation of EG, and restored the morphology of vacuoles. The accumulation of EG was not detected in EGH1 and UGT51(ATG26) double-disrupted mutants (ugt51Îegh1Î), indicating that EG was synthesized by Ugt51(Atg26) and degraded by Egh1 in vivo. These results clearly demonstrated that Egh1 is an ergosteryl-β-glucosidase that is functionally involved in the EG catabolic pathway and vacuole formation in S. cerevisiae.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |