[No authors listed]
In order for a new organism to form, the genomes of the highly specialized egg and sperm need to be reprogrammed into a totipotent state that is capable of generating all of the cell types that comprise an organism. This reprogramming occurs by erasing chromatin modifications, leaving the cells in a naïve state, followed by the induction of specialized programming events. Pioneer factors bind to the genome prior to zygotic genome activation, followed by acetylation of histones and further chromatin specialization by the addition of methylation marks later during differentiation. Genome-wide approaches have provided insight into the genomic and epigenomic regulation of gene expression during development, providing a new perspective on the process of cell specification and differentiation. In this review, we discuss how distal DNA and core promoter elements, RNA polymerase pausing, transcription factors, and co-regulators interact to shape the chromatin landscape and direct tissue-specific expression patterns during embryo development, focusing on the well-characterized Drosophila embryo.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |