例如:"lncRNA", "apoptosis", "WRKY"

Ameliorative Effect of Vicenin-2 and Scolymoside on TGFBIp-Induced Septic Responses.

Inflammation. 2015 Dec;38(6):2166-77
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein whose expression in several cell types is greatly increased by TGF-β. TGFBIp is released by the human umbilical vein endothelial cells (HUVECs) and functions as a mediator of experimental sepsis. Cyclopia subternata is a medicinal plant commonly used in traditional medicine to relieve pain in biological processes. In this study, we investigated the antiseptic effects and underlying mechanisms of vicenin-2 and scolymoside, two active compounds in C. subternata against TGFBIp-mediated septic responses in HUVECs and mice. The anti-inflammatory activities of vicenin-2 or scolymoside were determined by measuring permeability, human neutrophils adhesion and migration, and activation of pro-inflammatory proteins in TGFBIp-activated HUVECs and mice. According to the results, vicenin-2 or scolymoside effectively inhibited lipopolysaccharide-induced release of TGFBIp and suppressed TGFBIp-mediated septic responses, such as hyperpermeability, adhesion and migration of leukocytes, and expression of cell adhesion molecules. In addition, vicenin-2 or scolymoside suppressed the production of tumor necrosis factor-α and interleukin 6 and activation of nuclear factor-κB and extracellular regulated kinases 1/2 by TGFBIp. Vicenin-2 or scolymoside reduced cecal ligation and puncture (CLP)-induced septic mortality and pulmonary injury. Collectively, these results indicate that vicenin-2 and scolymoside could be a potential therapeutic agent for treatment of various severe vascular inflammatory diseases via inhibition of the TGFBIp signaling pathway.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读