[No authors listed]
Malaria, a mosquito-borne infectious disease, is caused by the Plasmodium genus, and remains one of the greatest health challenges worldwide. The malarial parasite possess a biosynthetic pathway for the B-group vitamin incorporating the thiamine metabolizing enzymes; humans on the other hand cannot synthesize the vitamin and require it from within their diet. The vitamin B1 biosynthetic enzyme 5-(2-hydroxyethyl)-4-methylthioazolekinase [EC. 2.7.1.50] from Plasmodium (PfThzK) is particularly attractive as a biomedical target since any inhibition of this enzyme may lead to an effective treatment for malaria. In the present study, PfThzK was recombinantly produced as a 6à His fusion protein in Escherichia coli BL21(DE3) and purified using nickel affinity and size exclusion chromatography. The enzyme was monomeric with a molecular mass of 34 kDa, a specific activity of 295.04 nmol min(-1) mg(-1) and showed an optimum temperature and pH of 37 °C and 7.5, respectively. The purified PfThzK was non-competitively inhibited (79%) by silver nanoparticles (2-6 nm); Ki=6.45 μM. A mechanism is suggested for the interaction of the silver nanoparticle with PfThzK through two sulphur bearing amino acids (Met(1), Cys(206)) on the surface of each subunit of the enzyme.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |