例如:"lncRNA", "apoptosis", "WRKY"

Syntenin regulates TGF-β1-induced Smad activation and the epithelial-to-mesenchymal transition by inhibiting caveolin-mediated TGF-β type I receptor internalization.

Oncogene. 2016 Jan 21;35(3):389-401. Epub 2015 Apr 20
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Syntenin, a tandem PDZ domain containing scaffold protein, functions as a positive regulator of cancer cell progression in several human cancers. We report here that syntenin positively regulates transforming growth factor (TGF)-β1-mediated Smad activation and the epithelial-to-mesenchymal transition (EMT) by preventing caveolin-1-mediated internalization of TGF-β type I receptor (TβRI). Knockdown of syntenin suppressed TGF-β1-mediated cell migration, transcriptional responses and Smad2/3 activation in various types of cells; however, overexpression of syntenin facilitated TGF-β1-mediated responses. In particular, syntenin knockdown abolished both the basal and TGF-β1-mediated repression of E-cadherin expression, as well as induction of vimentin expression along with Snail and Slug upregulation; thus, blocking the TGF-β1-induced EMT in A549 cells. In contrast, overexpression of syntenin exhibited the opposite effect. Knockdown of syntenin-induced ubiquitination and degradation of TβRI, but not TGF-β type II receptor, leading to decreased TβRI expression at the plasma membrane. Syntenin associated with TβRI at its C-terminal domain and a syntenin mutant lacking C-terminal domain failed to increase TGF-β1-induced responses. Biochemical analyzes revealed that syntenin inhibited the interaction between caveolin-1 and TβRI and knockdown of syntenin induced a massive internalization of TβRI and caveolin-1 from lipid rafts, indicating that syntenin may increase TGF-β signaling by inhibiting caveolin-1-dependent internalization of TβRI. Moreover, a positive correlation between syntenin expression and phospho-Smad2 levels is observed in human lung tumors. Taken together, these findings demonstrate that syntenin may act as an important positive regulator of TGF-β signaling by regulating caveolin-1-mediated internalization of TβRI; thus, providing a novel function for syntenin that is linked to cancer progression.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读