例如:"lncRNA", "apoptosis", "WRKY"

FASCICLIN LIKE ARABINOGALACTAN PROTEIN 4 and RESPIRATORY BURST OXIDASE HOMOLOG D and F independently modulate abscisic acid signaling.

Plant Signal Behav. 2015;10(2):e989064. doi:10.4161/15592324.2014.989064
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We previously suggested that At-FLA4 and ABA signaling act in synergy. Reactive oxygen species generated from the NADPH oxidases At-RBOHD and At-RBOHF play an important role in cell wall integrity control and ABA signaling and here we investigate their role for the At-FLA4 pathway. We find that in the At-fla4 At-rbohD At-rbohF triple mutant the root phenotype of At-fla4 is enhanced. Moreover, the abnormally high level of reactive oxygen species in At-fla4 mutant does not depend on AtRBOHD and -F. Likewise, suppression of the At-fla4 phenotype by ABA does not depend on the 2 oxidases. Consistent with their lack of effect on level in At-fla4, transcript level of AtRBOHD and -F is reduced in the At-fla4 mutant background. Taken together, our findings suggest that neither At-RBOHD nor At-RBOHF is involved in the synergism between ABA and At-FLA4. Consistently, the oxidases and At-FLA4 act independently of each other in duanyu1670 control.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读