例如:"lncRNA", "apoptosis", "WRKY"

Improved statistical methods enable greater sensitivity in rhythm detection for genome-wide data.

PLoS Comput. Biol.2015 Mar 20;11(3):e1004094. eCollection 2015 Mar
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Robust methods for identifying patterns of expression in genome-wide data are important for generating hypotheses regarding gene function. To this end, several analytic methods have been developed for detecting periodic patterns. We improve one such method, JTK_CYCLE, by explicitly calculating the null distribution such that it accounts for multiple hypothesis testing and by including non-sinusoidal reference waveforms. We term this method empirical JTK_CYCLE with asymmetry search, and we compare its performance to JTK_CYCLE with Bonferroni and Benjamini-Hochberg multiple hypothesis testing correction, as well as to five other methods: cyclohedron test, address reduction, stable persistence, ANOVA, and F24. We find that ANOVA, F24, and JTK_CYCLE consistently outperform the other three methods when data are limited and noisy; empirical JTK_CYCLE with asymmetry search gives the greatest sensitivity while controlling for the false discovery rate. Our analysis also provides insight into experimental design and we find that, for a fixed number of samples, better sensitivity and specificity are achieved with higher numbers of replicates than with higher sampling density. Application of the methods to detecting circadian rhythms in a metadataset of microarrays that quantify time-dependent gene expression in whole heads of Drosophila melanogaster reveals annotations that are enriched among genes with highly asymmetric waveforms. These include a wide range of oxidation reduction and metabolic genes, as well as genes with transcripts that have multiple splice forms.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读