例如:"lncRNA", "apoptosis", "WRKY"

IKs Gain- and Loss-of-Function in Early-Onset Lone Atrial Fibrillation.

J. Cardiovasc. Electrophysiol.2015 Jul;26(7):715-23. doi:10.1111/jce.12666. Epub 2015 May 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


INTRODUCTION:Atrial fibrillation (AF) is the most frequent cardiac arrhythmia. The potassium current IKs is essential for cardiac repolarization. Gain-of-function mutation in KCNQ1, the gene encoding the pore-forming α-subunit of the IKs channel (KV 7.1), was the first ion channel dysfunction to be associated with familial AF. We hypothesized that early-onset lone AF is associated with a high prevalence of mutations in KCNQ1. METHODS AND RESULTS:We bidirectionally sequenced the entire coding sequence of KCNQ1 in 209 unrelated patients with early-onset lone AF (<40 years) and investigated the identified mutations functionally in a heterologous expression system. We found 4 nonsynonymous KCNQ1 mutations (A46T, R195W, A302V, and R670K) in 4 unrelated patients (38, 31, 39, and 36 years, respectively). None of the mutations were present in the control group (n = 416 alleles). No other mutations were found in genes previously associated with AF. The mutations A46T, R195W, and A302V have previously been associated with long-QT syndrome. In line with previous reports, we found A302V to display a pronounced loss-of-function of the IKs current, while the other mutants exhibited a gain-of-function phenotype. CONCLUSIONS:Mutations in the IKs channel leading to gain-of-function have previously been described in familial AF, yet this is the first time a loss-of-function mutation in KCNQ1 is associated with early-onset lone AF. These findings suggest that both gain-of-function and loss-of-function of cardiac potassium currents enhance the susceptibility to AF.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读