例如:"lncRNA", "apoptosis", "WRKY"

Lack of malate valve capacities lead to improved N-assimilation and growth in transgenic A. thaliana plants.

Plant Signal Behav. 2014;9(7):e29057. doi:10.4161/psb.29057
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In this study we analyzed the relationship between malate valve capacities, N-assimilation, and energy metabolism. We used transgenic plants either lacking the chloroplast NADP-dependent malate dehydrogenase or mutants with a decreased transcript level of the plastid-localized NAD-dependent malate dehydrogenase. Plants were grown on nitrate or ammonium, respectively, as the sole N-source and transcripts were analyzed by qRT-PCR. We could show that the lack of malate valve capacities enhances N-assimilation and plastidial glycolysis by increasing transcript levels of Fd-GOGATs or NADH-GOGAT and plastidic NAD-GAPDHs (GapCps), respectively. Based on our results, we conclude that the lack of malate valve capacities is balanced by an increase of the activity of plastid-localized glycolysis in order to cover the high demand for plastidial ATP, stressing the importance of the plastids for energy metabolism in plant cells.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读