例如:"lncRNA", "apoptosis", "WRKY"

VGluT3-expressing CCK-positive basket cells construct invaginating synapses enriched with endocannabinoid signaling proteins in particular cortical and cortex-like amygdaloid regions of mouse brains.

J. Neurosci.2015 Mar 11;35(10):4215-28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Invaginating synapses in the basal amygdala are a unique type of GABAergic synapses equipped with molecular-anatomical organization specialized for 2-arachidonoylglycerol (2-AG)-mediated endocannabinoid signaling. Cholecystokinin (CCK)-positive basket cell terminals protrude into pyramidal cell somata and form invaginating synapses, where apposing presynaptic and postsynaptic elements are highly loaded with cannabinoid receptor CB₁ or 2-AG synthetic enzyme diacylglycerol lipase-α (DGLα), respectively. The present study scrutinized their neurochemical and neuroanatomical phenotypes in adult mouse telencephalon. In the basal amygdala, vesicular glutamate transporter-3 (VGluT3) was transcribed in one-fourth of CB₁-expressing GABAergic interneurons. The majority of VGluT3-positive CB₁-expressing basket cell terminals apposed DGLα clusters, whereas the majority of VGluT3-negative ones did not. Importantly, VGluT3-positive basket cell terminals selectively constructed invaginating synapses. GABAA receptors accumulated on the postsynaptic membrane of invaginating synapses, whereas metabotropic glutamate receptor-5 (mGluR₅) was widely distributed on the somatodendritic surface of pyramidal cells. Moreover, CCK₂ receptor (CCK₂R) was highly transcribed in pyramidal cells. In cortical regions, pyramidal cells equipped with such VGluT3/CB₁/DGLα-accumulated invaginating synapses were found at variable frequencies depending on the subregions. Therefore, in addition to extreme proximity of CB₁- and DGLα-loaded presynaptic and postsynaptic elements, tripartite transmitter phenotype of GABA/glutamate/CCK is the common neurochemical feature of invaginating synapses, suggesting that glutamate, CCK, or both can promote 2-AG synthesis through activating Gαq/₁₁ protein-coupled mGluR₅ and CCK₂R. These molecular configurations led us to hypothesize that invaginating synapses might be evolved to provide some specific mechanisms of induction, regulation, and cooperativity for 2-AG-mediated retrograde signaling in particular cortical and cortex-like amygdaloid regions.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读