例如:"lncRNA", "apoptosis", "WRKY"

Phosphorylation of voltage-dependent anion channel by c-Jun N-terminal Kinase-3 leads to closure of the channel.

Biochem. Biophys. Res. Commun.2015 Mar 27;459(1):100-6. Epub 2015 Feb 23
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Stress activated c-Jun N-terminal Kinase-3 (JNK3) has been reported to act on mitochondrion to promote neuronal cell death. Phosphorylation of mitochondrial Voltage-Dependent Anion Channel (VDAC) plays an important role in mitochondria-mediated cell death. Keeping these in view phosphorylation of rat brain VDAC by JNK3 has been studied in vitro. Pro Q Diamond phospho-protein staining experiment demonstrates VDAC is phosphorylated by JNK3. Bilayer electrophysiological experiments show that single-channel conductance of VDAC phosphorylated by JNK3 is significantly lower than that of the native VDAC at a membrane potential. The opening probability of VDAC undergoes massive reduction due to phosphorylation by JNK3. These indicate closure of VDAC due to phosphorylation by JNK3. Treatment of phosphorylated VDAC with alkaline phosphatase reversed the VDAC functional activity as shown by single-channel current and opening probability. The physiological consequence of closure of VDAC as a result of phosphorylation has been attributed to JNK3 dependent mitochondria-mediated apoptosis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读