例如:"lncRNA", "apoptosis", "WRKY"

A genetic dissection of intestinal fat-soluble vitamin and carotenoid absorption.

Hum. Mol. Genet.2015 Jun 01;24(11):3206-19. Epub 2015 Feb 20
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Carotenoids are currently investigated regarding their potential to lower the risk of chronic disease and to combat vitamin A deficiency. Surprisingly, responses to dietary supplementation with these compounds are quite variable between individuals. Genome-wide studies have associated common genetic polymorphisms in the BCO1 gene with this variability. The BCO1 gene encodes an enzyme that is expressed in the intestine and converts provitamin A carotenoids to vitamin A-aldehyde. However, it is not clear how this enzyme can impact the bioavailability and metabolism of other carotenoids such as xanthophyll. We here provide evidence that BCO1 is a key component of a regulatory network that controls the absorption of carotenoids and fat-soluble vitamins. In this process, conversion of β-carotene to vitamin A by BCO1 induces via retinoid signaling the expression of the intestinal homeobox transcription factor ISX. Subsequently, ISX binds to conserved DNA-binding motifs upstream of the BCO1 and SCARB1 genes. SCARB1 encodes a membrane protein that facilitates absorption of fat-soluble vitamins and carotenoids. In keeping with its role as a transcriptional repressor, SCARB1 protein levels are significantly increased in the intestine of ISX-deficient mice. This increase results in augmented absorption and tissue accumulation of xanthophyll carotenoids and tocopherols. Our study shows that fat-soluble vitamin and carotenoid absorption is controlled by a BCO1-dependent negative feedback regulation. Thus, our findings provide a molecular framework for the controversial relationship between genetics and fat-soluble vitamin status in the human population.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读