[No authors listed]
Doxorubicin, a chemotherapeutic agent, inhibits the religation step of topoisomerase II (Top2). However, the downstream ramifications of this action are unknown. Here we performed epistasis analyses of top2 with 63 genes representing doxorubicin resistance (DXR) genes in fission yeast and revealed a subset that synergistically collaborate with Top2 to confer DXR. Our findings show that the chromatin-regulating RSC and SAGA complexes act with Top2 in a cluster that is functionally distinct from the Ino80 complex. In various DXR mutants, doxorubicin hypersensitivity was unexpectedly suppressed by a concomitant top2 mutation. Several DXR proteins showed centromeric localization, and their disruption resulted in centromeric defects and chromosome missegregation. An additional top2 mutation could restore centromeric chromatin integrity, suggesting a counterbalance between Top2 and these DXR factors in conferring doxorubicin resistance. Overall, this molecular basis for mitotic catastrophe associated with doxorubicin treatment will help to facilitate drug combinatorial usage in doxorubicin-related chemotherapeutic regimens.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |