例如:"lncRNA", "apoptosis", "WRKY"

The drs tumor suppressor regulates glucose metabolism via lactate dehydrogenase-B.

Mol. Carcinog.2016 Jan;55(1):52-63. doi:10.1002/mc.22258. Epub 2015 Jan 24
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Previously, we showed that drs contributes to suppression of malignant tumor formation in drs-knockout (KO) mice. In this study, we demonstrate the regulation of glucose metabolism by drs using comparisons of drs-KO and wild-type (WT) mouse embryonic fibroblasts (MEFs). Extracellular acidification, lactate concentration, and glucose consumption in drs-KO cells were significantly greater than those in WT cells. Metabolomic analyses also confirmed enhanced glycolysis in drs-KO cells. Among glycolysis-regulating proteins, expression of lactate dehydrogenase (LDH)-B was upregulated at the post-transcriptional level in drs-KO cells and increased LDH-B expression, LDH activity, and acidification of culture medium in drs-KO cells were suppressed by retroviral rescue of drs, indicating that LDH-B plays a critical role for glycolysis regulation mediated by drs. In WT cells transformed by activated K-ras, expression of endogenous drs mRNA was markedly suppressed and LDH-B expression was increased. In human cancer cell lines with low drs expression, LDH-B expression was increased. Database analyses also showed the correlation between downregulation of drs and upregulation of LDH-B in human colorectal cancer and lung adenocarcinoma tissues. Furthermore, an LDH inhibitor suppressed anchorage-independent growth of human cancer cells and MEF cells transformed by activated K-ras. These results indicate that drs regulates glucose metabolism via LDH-B. Downregulating drs may contribute to the Warburg effect, which is closely associated with malignant progression of cancer cells.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读