[No authors listed]
AtMSI4/FVE/ACG1, one of five Arabidopsis thaliana genes encoding MSI1-like proteins, helps determine plant growth and development (including control of flowering), as well as responses to certain biotic and abiotic stresses. We reasoned that the product of this gene, AtMSI4, acts through protein partners, which we have co-immunopurified with AtMSI4 from A. thaliana suspension culture cells and identified by liquid chromatography-mass spectrometry (LC-MS). Many of the proteins associated with AtMSI4 have distinct RNA recognition motif (RRM) domains, which we determined to be responsible for association with AtMSI4; and most of the associated RRM domain proteins also contain PWWP domains that are specific to plants. We propose these novel ATMSI4-associated proteins help form nucleoprotein complexes that determine pleiotropic functional properties of AtMSI4/FVE/ACG1 involving plant development and responses to stress.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |