例如:"lncRNA", "apoptosis", "WRKY"

Role of Mig-6 in hepatic glucose metabolism.

J Diabetes. 2016 Jan;8(1):86-97. doi:10.1111/1753-0407.12261. Epub 2015 Mar 24
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Mitogen-inducible gene 6 (Mig-6) has an important role in the regulation of cholesterol homeostasis and bile acid synthesis. However, the physiological functions of Mig-6 in the liver remain poorly understood. METHODS:To investigate Mig-6 functioning in the liver, we used conditionally ablated Mig-6 using the Albumin-Cre mouse model (Alb(cre/+) Mig-6(f/f) ; Mig-6(d/d) ). Male mice were killed after a 24-h fast and refed after 24 h fasting. Fasting glucose and insulin levels were measured and western blot analyses were performed to determine epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK) 1/2, AKT, mammalian target of rapamycin (mTOR), c-Jun N-terminal kinase (JNK), and Insulin receptor substrate-1 (IRS-1) in liver tissue samples. In addition, human hepatocellular carcinoma HepG2 cells were transfected with Mig-6 short interference (si) RNA before western blot analysis. RESULTS:Serum fasting glucose levels were significantly higher in Mig-6(d/d) versus Mig-6(f/f) mice. On an insulin tolerance test, insulin sensitivity was decreased in Mig-6(d/d) versus Mig-6(f/f) mice. Furthermore, hepatic expression of the glucokinase (Gck), glucose-6-phosphatase (G6pc), and phosphoenolpyruvate carboxykinase 1 (Pck1) genes was decreased significantly in Mig-6(d/d) mice. Phosphorylation of EGFR, ERK1/2, AKT, mTOR, JNK, and IRS-1 was increased in Mig-6(d/d) compared with Mig-6(f/f) mice. CONCLUSION:Liver-specific ablation of Mig-6 caused hyperglycemia by hepatic insulin resistance. Increased EGFR signaling following Mig-6 ablation activated JNK and eventually induced insulin resistance by increasing phosphorylation of IRS-1 at serine 307. This is the first report of Mig-6 involvement in hepatic insulin resistance and a new mechanism that explains hepatic insulin resistance.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读