例如:"lncRNA", "apoptosis", "WRKY"

Disturbance in Z-disk mechanosensitive proteins induced by a persistent mutant myopalladin causes familial restrictive cardiomyopathy.

J. Am. Coll. Cardiol.2014 Dec 30;64(25):2765-76
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Familial restrictive cardiomyopathy (FRCM) has a poor prognosis due to diastolic dysfunction and restrictive physiology (RP). Myocardial stiffness, with or without fibrosis, underlie RP, but the mechanism(s) of restrictive remodeling is unclear. Myopalladin (MYPN) is a messenger molecule that links structural and gene regulatory molecules via translocation from the Z-disk and I-bands to the nucleus in cardiomyocytes. Expression of N-terminal MYPN peptide results in severe disruption of the sarcomere. OBJECTIVES:The aim was to study a nonsense MYPN-Q529X mutation previously identified in the FRCM family in an animal model to explore the molecular and pathogenic mechanisms of FRCM. METHODS:Functional (echocardiography, cardiac magnetic resonance [CMR] imaging, electrocardiography), morphohistological, gene expression, and molecular studies were performed in knock-in heterozygote (Mypn(WT/Q526X)) and homozygote mice harboring the human MYPN-Q529X mutation. RESULTS:Echocardiographic and CMR imaging signs of diastolic dysfunction with preserved systolic function were identified in 12-week-old Mypn(WT/Q526X) mice. Histology revealed interstitial and perivascular fibrosis without overt hypertrophic remodeling. Truncated Mypn(Q526X) protein was found to translocate to the nucleus. Levels of total and nuclear cardiac ankyrin repeat protein (Carp/Ankrd1) and phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (Erk1/2), Erk1/2, Smad2, and Akt were reduced. Up-regulation was evident for muscle LIM protein (Mlp), desmin, and heart failure (natriuretic peptide A [Nppa], Nppb, and myosin heavy chain 6) and fibrosis (transforming growth factor beta 1, alpha-smooth muscle actin, osteopontin, and periostin) markers. CONCLUSIONS:Heterozygote Mypn(WT/Q526X) knock-in mice develop RCM due to persistence of mutant Mypn(Q526X) protein in the nucleus. Down-regulation of Carp and up-regulation of Mlp and desmin appear to augment fibrotic restrictive remodeling, and reduced Erk1/2 levels blunt a hypertrophic response in Mypn(WT/Q526X) hearts.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读