例如:"lncRNA", "apoptosis", "WRKY"

Downregulation of connexin 32 attenuates hypoxia/reoxygenation injury in liver cells.

J. Biochem. Mol. Toxicol.2015 Apr;29(4):189-97. doi:10.1002/jbt.21684. Epub 2014 Dec 22
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Gap junction intercellular communication is involved in ischemia-reperfusion (IR) injury of organs. Connexins are proteins that are critical to the function of gap junctions. To clarify the role of gap junctions in IR injury in liver cells, the function of gap junctions was modulated in an in vitro hypoxia/reoxygenation (H/R) model. BRL-3A rat liver cells, endogenously expressing connexins Cx32 and Cx43, were used to model the process of hepatic IR injury. Suppression of gap junction activity was achieved genetically, using Cx32-specific small interfering RNA (siRNA), or chemically, with pharmacological inhibitors, oleamide, and 18-α-GA. BRL-3A cells subjected to H/R exhibited reduced cell survival and pathologies indicative of IR injury. Cx32-specific siRNA, oleamide, and 18-α-GA, respectively, decreased gap junction permeability, as assessed by the parachute assay. Pretreatment with Cx32-specific siRNA increased cell survival. Pretreatment with oleamide or 18-α-GA did not improve cell survival. Modulating gap junction by Cx32 gene silencing protected BRL-3A liver cells from H/R.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读