例如:"lncRNA", "apoptosis", "WRKY"

Differential regulation of the heat shock factor 1 and DAF-16 by neuronal nhl-1 in the nematode C. elegans.

Cell Rep. 2014 Dec 24;9(6):2192-205. Epub 2014 Dec 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In the nematode Caenorhabditis elegans, insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) reduction hyperactivates the transcription factors DAF-16 and heat shock factor 1 (HSF-1), creating long-lived, stress-resistant worms that are protected from proteotoxicity. How DAF-16 executes its distinct functions in response to IIS reduction is largely obscure. Here, we report that NHL-1, a member of the TRIM-NHL protein family, acts in chemosensory neurons to promote stress resistance in distal tissues by DAF-16 activation but is dispensable for the activation of HSF-1. The expression of nhl-1 is regulated by the IIS, defining a neuronal regulatory circuit that controls the organismal stress response. The knockdown of nhl-1 protects nematodes that express the Alzheimer-disease-associated Aβ peptide from proteotoxicity but has no effect on lifespan. Our findings indicate that DAF-16- and HSF-1-regulated heat-responsive mechanisms are differentially controlled by neurons and show that one neuronal protein can be involved in the activation of different stress responses in remote tissues.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读