例如:"lncRNA", "apoptosis", "WRKY"

Molecular characterization of the porcine S100A6 gene and analysis of its expression in pigs infected with highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV).

J. Appl. Genet.2015 Aug;56(3):355-63. doi:10.1007/s13353-014-0260-7. Epub 2014 Dec 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Our previous microarray study revealed that S100A6 was significantly upregulated in porcine alveolar macrophages (PAMs) infected with highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV). In the present study, we cloned both cDNA and genomic DNA sequences of the gene. Transient transfection indicated that the porcine S100A6 protein was located in the nucleus and cytoplasm. Reverse transcription polymerase chain reaction (RT-PCR) revealed that the porcine S100A6 gene was highly expressed in the kidney and subcutaneous fat. Polyinosinic-polycytidylic acid [poly (I:C)] induced porcine S100A6 gene expression in PK-15 cells. Quantitative real-time PCR (Q-PCR) analysis further showed that the porcine S100A6 gene was upregulated in different cells and tissues of Tongcheng pigs infected with HP-PRRSV. Chromosome walking obtained the porcine S100A6 promoter region and then luciferase reporter assays confirmed its regulatory activities. We observed a putative NF-κB binding site in the core promoter region, which may explain the upregulation of porcine S100A6 in response to PRRSV. Transfection of NF-κB (p65 subunit) intensely induced the promoter activity of the porcine S100A6 gene, while an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), inhibited this activity. Furthermore, compared to its wild type, the promoter activity was significantly reduced when it contained a mutant NF-κB binding site. All these results provide a solid foundation to further investigate how S100A6 is involved in PRRSV infection.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读