例如:"lncRNA", "apoptosis", "WRKY"

Protein z exerts pro-angiogenic effects and upregulates CXCR4.

PLoS One. 2014 Dec 04;9(12):e113554. eCollection 2014
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVE:Protein Z (PZ) is a vitamin K-dependent coagulation factor without catalytic activity. Evidence points towards PZ as an independent risk factor for the occurrence of human peripheral arterial disease. However, the role of PZ in ischemia-driven angiogenesis and vascular healing processes has not been elucidated so far. APPROACH:Angiogenic potency of PZ was assessed in established in vitro assays using endothelial cells. PZ-deficient (PZ(-/-)) mice and their wild-type littermates (PZ(+/+)) were subjected to hindlimb ischemia. Furthermore, PZ(-/-) mice were exposed to PZ expressing adenovirus (AdV-PZ) or control adenovirus (AdV-GFP). In an additional set of animals, PZ(-/-) mice were exposed to AdV-PZ and AdV-GFP, each in combination with the CXCR4 antagonist AMD3100. RESULTS:In vitro, PZ stimulated migratory activity and capillary-like tube formation of endothelial cells comparable to SDF-1. PZ(-/-) mice exhibited diminished hypoxia-driven neovascularization and reperfusion in post-ischemic hindlimbs, which was restored by adenoviral gene transfer up to levels seen in PZ(+/+) mice. The stimulatory impact of PZ on endothelial cells in vitro was abolished by siRNA targeting against PZ and PZ was not able to restore reduced migration after knock-down of CXCR4. The increased surface expression of CXCR4 on PZ-stimulated endothelial cells and the abrogated restoration of PZ(-/-) mice via AdV-PZ after concomitant treatment with the CXCR4 antagonist AMD3100 supports the idea that PZ mediates angiogenesis via a G-protein coupled pathway and involves the SDF-1/CXCR4 axis. This is underlined by the fact that addition of the G-protein inhibitor PTX to PZ-stimulated endothelial cells abolished the effect of PZ on capillary-like tube formation. CONCLUSIONS:The results of the current study reveal a role of PZ in ischemia-induced angiogenesis, which involves a G-protein coupled pathway and a raised surface expression of CXCR4. Our findings thereby extend the involvement of PZ from the coagulation cascade to a beneficial modulation of vascular homeostasis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读