例如:"lncRNA", "apoptosis", "WRKY"

The RNA binding protein MEX-3 retains asymmetric activity in the early Caenorhabditis elegans embryo in the absence of asymmetric protein localization.

Gene. 2015 Jan 10;554(2):160-73. Epub 2014 Oct 28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The RNA binding protein MEX-3 is required to restrict translation of pal-1, the Caenorhabditis elegans caudal homolog, to the posterior of the early embryo. MEX-3 is present uniformly throughout the newly fertilized embryo, but becomes depleted in the posterior by the 4-cell stage. This MEX-3 patterning requires the CCCH zinc-finger protein MEX-5, the RNA Recognition Motif protein SPN-4, and the kinase PAR-4. Genetic and biochemical evidence suggests that MEX-5 binds to MEX-3 in the anterior of the embryo, protecting MEX-3 from degradation and allowing it to bind the pal-1 3'UTR and repress translation. MEX-3 that is not bound to MEX-5 becomes inactivated by par-4, then targeted for spn-4 dependent degradation. After the 4-cell stage, residual MEX-3 is degraded in somatic cells, and only persists in the germline precursors. To better understand regulation of mex-3, GFP was fused to MEX-3 or regions of MEX-3 and expressed in developing oocytes. GFP::MEX-3 expressed in this manner can replace endogenous MEX-3, but surprisingly is not asymmetrically localized at the 4-cell stage. These results indicate that GFP::MEX-3 retains asymmetric activity even in the absence of asymmetric protein localization. Neither the mex-3 3'UTR nor protein degradation at the 4-cell stage is strictly required. A region of MEX-3 containing a glutamine-rich region and potential ubiquitination and phosphorylation sites is sufficient for soma-germline asymmetry. Results from mex-5/6 and suggest two pathways for MEX-3 degradation, an early spn-4 dependent pathway and a later spn-4 independent pathway. These results indicate that mex-3 activity is regulated at multiple levels, leading to rapid and robust regulation in the quickly developing early embryo.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读