例如:"lncRNA", "apoptosis", "WRKY"

Role of protein phosphorylation in excitation-contraction coupling in taurine deficient hearts.

Am J Physiol Heart Circ Physiol. 2015 Feb 01;308(3):H232-9. Epub 2014 Nov 26
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Taurine is a beta-amino acid found in very high concentration in the heart. Depletion of these intracellular stores results in the development of cardiomyopathy, thought to be mediated by abnormal sarcoplasmic reticular (SR) Ca(2+) transport. There is also evidence that taurine directly alters the Ca(2+) sensitivity of myofibrillar proteins. Major regulators of SR Ca(2+) ATPase (SERCA2a) are the phosphorylation status of a regulatory protein, phospholamban, and SERCA2a expression, which are diminished in the failing heart. The failing heart also exhibits reductions in myofibrillar Ca(2+) sensitivity, a property regulated by the phosphorylation of the muscle protein, troponin I. Therefore, we tested the hypothesis that taurine deficiency leads to alterations in SR Ca(2+) ATPase activity related to reduced phospholamban phosphorylation and expression of SERCA2a. We found that a sequence of events, which included elevated protein phosphatase 1 activity, reduced autophosphorylation of CaMKII, and reduced phospholamban phosphorylation, supports the reduction in SR Ca(2+) ATPase activity. However, the reduction in SR Ca(2+) ATPase activity was not caused by reduced SERCA2a expression. Taurine transporter knockout (TauTKO) hearts also exhibited a rightward shift in the Ca(2+) dependence of the myofibrillar Ca(2+) ATPase, a property that is associated with an elevation in phosphorylated troponin I. The findings support the observation that taurine deficient hearts develop systolic and diastolic defects related to reduced SR Ca(2+) ATPase activity, a change mediated in part by reduced phospholamban phosphorylation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读