例如:"lncRNA", "apoptosis", "WRKY"

FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis.

Nat Commun. 2014 Nov 17;5:5473
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Global warming is predicted to profoundly affect plant distribution and crop yield in the near future. Higher ambient temperature can influence diverse aspects of plant growth and development. In Arabidopsis, the basic helix-loop-helix transcription factor Phytochrome-Interacting Factor 4 (PIF4) regulates temperature-induced adaptive responses by modulating auxin biosynthesis. At high temperature, PIF4 directly activates expression of YUCCA8 (YUC8), a gene encoding an auxin biosynthetic enzyme, resulting in auxin accumulation. Here we demonstrate that the RNA-binding protein FCA attenuates PIF4 activity by inducing its dissociation from the YUC8 promoter at high temperature. At 28 °C, auxin content is elevated in FCA-deficient mutants that exhibit elongated stems but reduced in FCA-overexpressing plants that exhibit reduced stem growth. We propose that the FCA-mediated regulation of YUC8 expression tunes down PIF4-induced architectural changes to achieve thermal adaptation of stem growth at high ambient temperature.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读