[No authors listed]
Munc13-3 is a presynaptic protein implicated in vesicle priming that is strongly expressed in cerebellar granule cells (GCs). Mice deficient of Munc13-3 (Munc13-3(-/-)) show an increased paired-pulse ratio (PPR), which led to the hypothesis that Munc13-3 increases the release probability (pr) of vesicles. In the present study, we analyzed unitary synaptic connections between GCs and basket cells in acute cerebellar slices from wild-type and Munc13-3(-/-) mice. Unitary EPSCs recorded from Munc13-3(-/-) GCs showed normal kinetics and synaptic latency but a significantly increased PPR and fraction of synaptic failures. A quantal analysis revealed that neither the charge of single quanta nor the binominal parameter N were affected by loss of Munc13-3 but that pr was almost halved in Munc13-3(-/-). Neither presynaptic Ca(2+) influx was affected by deletion of Munc13-3 nor replenishment of the readily releasable vesicle pool. However, a high concentration of EGTA led to a reduction in EPSCs that was significantly stronger in Munc13-3(-/-). We conclude that Munc13-3 is responsible for an additional step of molecular and/or positional "superpriming" that substantially increases the efficacy of Ca(2+)-triggered release.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |